SayPro Provide a structured, replicable process for extracting risk metrics.
SayPro Risk Metrics Extraction Process
Report: SayPro Monthly June SCRR-22
Period: June 1–30, 2025
1. Define Objectives and Metrics
🎯 Goal:
Quantify and evaluate the risk profile for SayPro’s operations, investments, or financial instruments in June 2025.
📌 Common Risk Metrics:
- VaR (Value at Risk)
- CVaR (Conditional Value at Risk)
- Volatility (σ)
- Sharpe Ratio
- Max Drawdown
- Beta and Alpha (vs. benchmark)
- Exposure by asset class or region
- Stress Testing Scenarios
2. Data Preparation
📂 Inputs:
- SCRR-22 report data (daily returns, positions, exposures, benchmark returns)
- Market data for risk-free rate and benchmarks
🧹 Cleaning:
- Ensure time series continuity (no missing dates)
- Normalize data (log returns if needed)
- Align benchmark and portfolio returns
3. Calculate Risk Metrics
For June 1–30, 2025:
a. Daily Return Calculation:
pythonCopyEditdaily_return = (Price_t / Price_{t-1}) - 1
b. Volatility:
Standard deviation of daily returns annualized:
pythonCopyEditvolatility = std(daily_returns) * sqrt(252)
c. VaR (95% confidence):
pythonCopyEditVaR_95 = -quantile(daily_returns, 0.05)
d. CVaR (Expected Shortfall):
pythonCopyEditCVaR_95 = -mean(daily_returns[daily_returns < quantile(daily_returns, 0.05)])
e. Sharpe Ratio:
Assuming constant risk-free rate (Rf):
pythonCopyEditSharpe = (mean(daily_returns) - Rf/252) / std(daily_returns)
f. Max Drawdown:
Track peak-to-trough drop:
pythonCopyEditdrawdown = (current_value - peak_value) / peak_value
g. Beta and Alpha:
Regression against benchmark returns:
pythonCopyEditPortfolio_Return = Alpha + Beta * Benchmark_Return + error
4. Stress Testing (Optional)
Simulate hypothetical shocks:
- Interest rate change
- Commodity price drop
- Market crash scenarios
5. Reporting Format
Organize extracted metrics in a standardized template:
Metric | Value | Unit |
---|---|---|
Volatility | X.XX% | Annualized |
VaR (95%) | -X.XX% | Daily |
CVaR (95%) | -X.XX% | Daily |
Sharpe Ratio | X.XX | |
Max Drawdown | -X.XX% | Period |
Beta (vs Benchmark) | X.XX | |
Alpha | X.XX% |
6. Automation & Replication Tips
- Build a Python/R script to ingest SCRR data and compute metrics.
- Store historical metrics in a version-controlled repository.
- Maintain a metadata log: data source, timestamp, script version.
Leave a Reply